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Abstract 
The logic of domains has become a key organizing principle for contemporary computing projects 

and in broader science policy. The logic parses collectives of expertise into ‘domains’ that are to 

be studied or engaged in order to inform computational advancements and/or interventions on 

the domains themselves. The concept of a domain is set against a proposition that there is a 

more general, domain independent or agnostic technique that can serve to intermediate the 

domains. This article contrasts instances of this discourse, organizing and techne, drawing from 

cases in artificial intelligence, software engineering, and science policy to illustrate three ongoing 

figurations of the logic as i) experimental research, ii) formalization in method and software tools, 

and iii) a de facto organizing principle for science policy and technology development. 

Article 

https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/sss


 282  Social Studies of Science 49(3) 

Keywords 
artificial intelligence, computer science, data science, domains, knowledge representation, 

science policy 

Correspondence to: 
David Ribes, Human Centered Design & Engineering (HCDE), University of Washington, 3960 Benson 

Lane NE, Seattle, WA 98115, USA. Email: dribes@uw.edu 

Introduction 

In contemporary settings of applied computational research, such as data science, the use 

of the term ‘domain’ is ubiquitous. The term serves to identify, demarcate and 

characterize spheres of worldly action or knowledge, for instance, biology as the ‘domain 

science’ of life or geologists as the ‘domain experts’ of the earth. The use of the term 

implies, necessarily, that there is more than one domain, that they are in some way 

distinct from each other, and thus that domains are topically specific. The concept of a 

domain is set against a proposition that there is a more general, even universal, method 

or technique; so, for instance, a data analytic tool may be dubbed ‘domain independent’, 

meaning that it can be of use across many, and sometimes all, domains. This general or 

universal quality is characterized as the feature of a kind of field or expert, recently data 

science, but in the past a feature of other specializations such as the computing and 

information sciences. 

Our goal is to articulate the regular and changing features of what we call the logic of 

domains. Our strategy of exposition is to contrast three characteristic figurations for the 

logic, as i) experimental or exploratory investigations of domains, ii) routinization and 

formalization in toolsets, and iii) naturalization in language, science policy and 

organizational planning. The first figuration explores the nexus of artificial intelligence 

and cognitive science that flourished in the 1960s and 1970s as researchers proposed ‘to 

use all of our knowledge to construct a computer program that knows’ (McCarthy and 

Hayes, 1981 [1969]: 6).1 The second figuration focuses on software engineering, where 

the logic of domains serves as a pathway for the reuse of software within and across 

domains. We track the endeavor to formalize inquiry and representation through efforts 

to transform domain analysis ‘from art to engineering’ (Arango, 1989: 152). Even while 

continuing on a trajectory of mounting academic interest in the form of research and tool 

building, beginning in the 1990s the logic of domains manifests as a novel figure, 

becoming an organizing principle for science policy and in technology development 

projects. Herein, domain becomes a vernacular term, and the logic a de facto 

organizational approach, serving to support and fund new research and tool building 

endeavors as an ‘engine of progress’ (National Research Council (NRC), 1992) that 

promises to advance both computational capacity and the domains. As an ‘engine’, 

funding is made available for research projects in ways organized from inception by the 

logic of domains, thus further propelling the logic by supporting new research and tool-

building endeavors. 
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The logic of domains is littered with its own criticisms even amongst its adherents, 

and throughout the article we recount fragments of key debates as revealing of recurrent 

challenges for the logic. What is a domain and what constitutes independence varies 

across these three figurations, even while still exhibiting both positions. In the discussion 

we offer a synthetic view of the problems that have been articulated by supporters and 

detractors of the logic of domains, parsing four recurrent topics: ontology; inquiry and 

representation; accountability; and the relationship of the general and the specific. The 

conclusion is cast programmatically, calling for research that inspects the practice and 

consequences of the logic of domains. 

Our approach to the investigation of a ‘logic’ are in part inspired by Goody’s (1986) 

The Logic of Writing and the Organization of Society, with the adoption of writing 

demonstrating regularities even across distinct regional manifestations. We also draw on 

Verran’s (2001) inspection of the practical creation of equivalencies across distinct 

formal systems. But we are perhaps most inspired by Mol’s (2008) characterization of 

logic in her study of medical care: 

I am after the rationality, or rather the rationale, of the practices I am studying. Here the term 

‘logic’ helps. It asks for something that one might also call a style. It invites the exploration of 

what it is appropriate or logical to do in some site or situation, and what is not. It seeks a local, 

fragile and yet pertinent coherence. This coherence is not necessarily obvious to the people 

involved. It need not even be verbally available to them. It may be implicit: embedded in 

practices, buildings, habits and machines. And yet, if we want to talk about it, we need to 

translate a logic into language. This, then, is what I am after. (p. 8) 

And so too are we. What we trace in this article is a genealogy with many influential but 

untended branches, of direct connections through academic mentorship, shared 

intellectual milieus, influential writings, concrete passing of technical artifacts, 

methodologies and standardized software support packages. 

The logic of domains is not only a matter of science or research, it has also always 

been bound up with engineering and design goals, particularly of computational systems, 

tools or infrastructures that are developed, in part, with the goal of intervening on the 

domains. Thus, the logic of domains may be characterized as a style for organizing 

engineering (see also Fujimura and Chou, 1994; Hacking, 1992; Keating and Cambrosio, 

2012). 

Last, our naming for the logic of domains is a light pun, for one recurrent 

consideration we track is whether domains may have logics of their own, and if so, would 

that conclude the project of the logic of domains, or offer its very grist? 

Domains and their tertium quid 

The logic parses the world into domains of human action or expertise, along with 

something beyond or between the domains that is somehow more general, even 

universal, that serves to intermediate the domains. Throughout the article our key 

analytic stance is to simultaneously keep in view both domains and independence, even 

while both positions exhibit changing, if still related, meanings. Much historical and 

sociological research that has explored the intersection of computing and some domain 
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has failed to recognize intellectual ambitions and technological architectures that seek to 

transcend domain specificity. It is this goal, to develop cross-domain or domain 

independent tools, formalisms and methods that is our central focus here, and a key 

characterizing feature of the logic of domains. 

The article is told via three figurations of the logic, roughly arranged in a 

chronological manner and that share a genealogical relationship across them, but in no 

sense do we here attempt an historical account of the logic of domains. All three of these 

figurations can be observed in the present, none are in solely in the past: the logic of 

domains today remains a research endeavor, a tool-building enterprise, and an organizing 

principle for science funding and technology development. 

What is meant by ‘domain’ – more precisely, what domains ‘have’ or ‘are made of’ – 

has several different evolving or competing meanings and associated techniques of 

investigation and representation. In our first figuration, focused on artificial intelligence 

researchers during the 1960s and 70s, the concept of a domain serves to objectivize the 

knowledge of circumscribed groups in order to ‘capture’ and ‘encode’ it within expert 

systems. In our second figure, focused on domain analysis in software engineering, 

domains are the organizational settings that ‘have’ software tools to solve problems. 

‘Domain analysis’ names an approach that seeks to systematize or formalize inquiry and 

representation of domains. The third figuration is focused on science policy and a more 

general vernacularization of the logic of domains. Here, the term domain is regularly 

deployed but rarely defined, but one common feature is the proposition that all boats will 

rise, that is, that both domain and the computational field will profit from a common 

endeavor. 

The term domain appears consistently even while varying in its referent, but what is 

beyond, above, between or below domains has a more nebulous designation, a tertium 

quid to the domains: a third position that is indefinite and undefined but is related to two 

definite or known things. Always cast in relation to domain specificity, it is given such 

names as ‘domain independent’, ‘domain general’, or ‘domain agnostic’. On other 

occasions that position goes unnamed or unremarked, instead referenced by the medium 

of representation – e.g. ‘formalism’ or ‘knowledge representation language’ – used to 

capture or represent domains. 

Paraphrasing Daston and Galison (1992: 82), independence is related to domains as 

wax to seal, as hollow imprint to the bolder and more solid features of domains. The 

tertium quid to the domains is thus described as independent, general, agnostic, or empty 

in the sense that it is defined by an absence of dependence, specificity, commitments or 

content. Yet even while negatively defined against this or that property of a domain, 

independence is not merely its opposite. The ‘stronger test of domain independence’ 

(Van Melle, 1980: 6) is in its additional capacity to be relevant, or applicable, to another 

domain, many of them, or all of them. In this article, we have included three 

visualizations that demonstrate the particular image of objectivity established by the 

logic of domains; each draws on distinct visual conventions, but all posit domain-specific 

and domain-independent positions in designing a computational system. 

What counts as a domain, or independence from domains, shifts across our three 

figurations. Both domains and independence are the object of contestation, sometimes 

explicitly while at other times more quietly; their scope and limits are at stake in the very 
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debates we track in this article. We (and occasionally the actors) cast the logic of domains 

as occurring in a rough spectrum that, on the one end, treats the domains as 

decomposable in the same way, or, on the other end, treats them as fundamentally distinct 

while still available to intermediation. Respectively we call these representationalist and 

irreductionist approaches (Latour, 1988; Stengers, 2000), and return to the topic more 

extensively in the discussion. 

Making the crossing from independence to domains, or vice versa, is a central concern 

for those adopting the logic. Domain independent tools, techniques, algorithms, or theory 

must be ‘applied’, ‘tailored’, or ‘customized’ to a specific domain. Alternately, domain 

specific features (such as knowledge, software or data) are ‘solicited’, ‘extracted’ or 

‘captured’ so as to be rendered independent or transportable within and across domains. 

We also draw attention to longstanding boundary-spanning figures – variously called the 

craftsman, domain analyst, knowledge engineer, pi-shaped person, or bilingual – who 

are simultaneously domain experts and capacitated to work beyond the domain. Such 

boundary-spanning figures proffer a solution to a central goal for those taking up the 

logic: that software, theory, data or algorithms will be adequate for use in one domain, 

but also in another, many and, on occasion, all of them. 

As the logic of domains has become a vernacular feature of key science policy and 

technological development projects, it has become a de facto style of organizing for tool 

and system building. Here we limit our focus to policy documents and funding 

arrangements from the US National Science Foundation and National Academy of 

Science, but similar statements are apparent in other US science funding agencies and 

internationally. As a vernacular style of organizing, the logic retains its parsing of the 

domains, models of empirical inquiry, and its engineering goal to intermediate the 

domains, but it loses much of the debated intellectual quality that characterized its 

explicit discussion as an experimental endeavor. In short, beginning in the 1990s, in some 

spheres ‘domain’ has become less of an epistemic object and more a matter of fact 

(Latour and Woolgar, 1979), stripped of the modalities of debate that characterized its 

development even while gaining impact and momentum as a broadly used vernacular 

category and organizing principle in small and large information technology endeavors 

alike. 

A ‘real world’ for artificial intelligence 

Designing such a program requires commitments about what knowledge is and how it is 

obtained. Thus, some of the major traditional problems of philosophy arise in artificial 

intelligence. (McCarthy and Hayes, 1981 [1969]) 

Writing retrospectively in 1993 on the state of their field, Stanford computer scientists 

Edward Feigenbaum and Bruce Buchanan (1993) sought to characterize ‘a shift in 

paradigm’ in artificial intelligence research from ‘one based on generality’ to ‘one that 

was knowledge-based’ (p. 236). A program called the General Problem Solver (GPS) 

served as their exemplar of generality, while another program called Mycin served as 

their exemplar of the knowledge-based paradigm. In this section we track this transition 

via these two artificial intelligence projects, though we ultimately conclude that they 

represent poles for the logic of domains rather than any paradigmatic transformation. 
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The former treated all domains as decomposable in the same way, while the latter served 

to consider whether domains may have a logic or style of reasoning of their own, even 

while both proffered an approach that was independent of any domain. 

Domains are the ‘real world’ to artificial intelligence researchers and expert systems 

designers. The phrase ‘real world’ is liberally scattered throughout the AI writings of the 

1960s and 1970s (and still today), often appearing in quotes, though sometimes without. 

As the developers of the expert system Mycin programmatically argued in their 1977 

paper: 

Two recent trends in artificial intelligence research have been applications of AI to ‘real-world’ 

problems, and the incorporation in programs of large amounts of task-specific knowledge. The 

former is motivated in part by the belief that artificial problems may prove in the long run to 

be more a diversion than a base to build on, and in part by the belief that the field has developed 

sufficiently to provide techniques capable of tackling real problems. (Davis et al., 1977: 17) 

If AI researchers were ready to tackle ‘real world’ problems in 1977, what had they been 

up to until then? The critique was already well-established within AI circles that 

successful applications of AI had focused on ‘block worlds’ or ‘artificial problems’, 

primarily settings that operated with explicitly formulated rules readily amenable to the 

computational formalisms of the time, such as games (chess, checkers) and some highly 

mathematized subfields such as physics that relied heavily on logical inference and 

deductive reasoning. One concern was that the techniques of AI would only ever be 

applicable to such artificial problems. But in the quote above, Davis et al. went further, 

suggesting that turning to the ‘real world’ would challenge the field to encounter and 

manage that world’s full complexity. 

A pervasive goal of AI was problem-solving, so too one of the most common 

modifiers for domains at the time is ‘problem’, as in ‘problem domains.’ In addition to 

having problems, domains were sometimes said to have the expertise, know-how or 

knowledge to solve them.2 An influential, but also controversial, formulation of problem 

domains was articulated in Herbert Simon’s (1973) well-known paper ‘The structure of 

ill structured problems’. Simon (1973) identifies much the same challenge for AI 

research as Davis et al. above, that is, transitioning AI from a focus on problems of 

logical and deductive reasoning such as chess or theoretical physics to ‘the real world of 

large problems’ (p. 186). However, in contrast to the assertion that past work on artificial 

problems might prove a dead end for AI, Simon (1973) strongly argued the exact 

opposite: 

There is no reason to suppose that new and hitherto unknown concepts or techniques are needed 

to enable artificial intelligence systems to operate successfully in domains that have these 

characteristics [ill structured problems]. (p. 181) 

Simon asserted that any problem, whether well- or ill-structured, could be decomposed 

using the same repertoire of analytical concepts and techniques, or ‘formalism.’ This line 

of argumentation recapitulated much of Simon’s work in collaboration with Allen 

Newell and John Shaw, such as the development of the renowned AI program the 

General Problem Solver (GPS): 
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the core of GPS consists of some general, but fairly powerful, problem-solving heuristics. To 

apply these heuristics to a particular problem domain, GPS must be augmented by the 

definitions and rules of mathematics or logic that describe that domain … The justification for 

calling GPS ‘general’ lies in this factorization of problem solving heuristics from subject 

matter, and its ability to use the same heuristics to deal with different subjects. (Newell et al., 

2000 [1959]: 72) 

As with Simon, ‘problems’ in GPS are specific to domains, whereas problem-solving 

heuristics are general. AI researchers took inspiration from their model of the human 

mind (Nilsson, 2009): In particular, minds are capable of solving many kinds of 

problems, and so, any program that deserved the title ‘intelligent’ would also have to be 

general. GPS came to be successfully used for applications such as certain chess and 

logic problems, and solving the Tower of Hanoi. However, only a few years later GPS 

came to stand in for an extant provinciality in AI research that merely focused on 

wellstructured domains. Would approaches such those of the GPS be limited to artificial 

problems, rather than the real world of ill-structured problems? 

The language of the ‘real world’ was accompanied by an empiricist ethos: Knowing 

and representing the problems of the domains would involve some form of research 

rather than a logical or deductive arrival at their problems. John McCarthy (often 

attributed with naming artificial intelligence (Boden, 2008; Nilsson, 2009)) and Patrick 

Hayes put it this way: 

The right way to think about the general problems of metaphysics and epistemology is not to 

attempt to clear one’s own mind of all knowledge and start with ‘Cogito ergo sum’ and build 

up from there. Instead, we propose to use all of our knowledge to construct a computer program 

that knows. (McCarthy and Hayes, 1981 [1969]: 6)3 

The task at hand, then, was to scour the world for ‘all of our knowledge’ and represent 

it within computable formalisms. Or, cast programmatically: ‘How are observations to 

be used to get knowledge about the world, and how are the other kinds of knowledge to 

be obtained?’ and ‘In what kind of internal notation is the system’s knowledge to be 

expressed?’ (McCarthy and Hayes, 1981 [1969]). These two questions – how to acquire 

knowledge from domains, and how to represent that knowledge in a computable 

formalism – become central challenge questions for the logic of domains thereafter. 

While empiricism (or, more precisely, the assembly of extant knowledge) animated 

the discourse of expert systems in the 1960s and 70s, the methods of inquiry to capture 

that knowledge were rather haphazard. In the 1980s, discussions of methodology would 

flourish with the first formally articulated methods and support tools for ‘domain 

analysis’, and eventually the founding of focused journals such as Knowledge 

Acquisition in 1989 – discussed in the next section. But in the early 1970s, discussions 

of empirical methods for knowing the domains, or acquiring their knowledge, were 

usually interleaved into the discussion of the development of particular programs rather 

than a discrete topic to be addressed on its own. 

Always accompanying commitments about the content of a domain was the question 

of how to ‘acquire’ or ‘elicit’ that knowledge, along with how to ‘represent’ or ‘capture’ 

it. Representing knowledge in a computable form requires forms of media for doing so; 
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and so, in these years of AI we can observe the creation of a series of competing 

formalisms for computable knowledge representation (Poirier, 2018). In this milieu, 

formulations of what matters in a domain (almost invariably, problems and the 

knowledge to solve them), coevolved with techniques for acquisition and media for 

representation. 

Here we return to Mycin. In his 1980 report to the US Office of Naval Research, 

Edward Feigenbaum (1980: 1) characterized expert systems as ‘the applied side of 

artificial intelligence’. Feigenbaum himself had been a key developer of the expert 

system DENDRAL and the machine learning system Meta-DENDRAL, programs that 

analyzed mass spectral data to infer a likely chemical structure. Mycin borrowed many 

architectural features from DENDRAL (discussed below), but at a more conceptual level 

Feigenbaum and Buchanan (1993) characterized DENDRAL as having ‘set in motion a 

shift in paradigm in AI from one based on generality to one that was knowledge-based’ 

(p. 236). As we have noted, they took GPS to be characteristic of the generality paradigm, 

while Mycin served as their exemplar of an expert system set in the knowledge based 

paradigm. 

Mycin was initially developed as Robert Shortliffe’s medical dissertation, in 

collaboration with artificial intelligence researchers Randal Davis, Bruce Buchanan and 

others in the computer science department at Stanford University (Berg, 1997). This 

expert system and its many descendants were to remain the research object of this lab of 

artificial intelligence researchers for over a decade. Mycin was intended to identify 

bacterial infections such as meningitis or bacteremia by having doctors input symptoms 

to the computer program. With sufficient and consistent inputs, Mycin would diagnose 

and then recommend an antibiotic treatment. The expert system itself was named after a 

common suffix for antibiotics: -mycin. Here we will briefly focus on the capture of 

domain knowledge in production rules, and then turn to the crafting of Mycin’s domain 

independent offspring, eMycin. 

Mycin is known as a rule-based expert system; it represented the knowledge of 

infectious disease specialists in if/then ‘production rules’, each with a premise and an 

action.  

For example, 

If (1) the infection is primary-bacteremia, and 
(2) the site of the culture is one of the sterilesites, and 
(3) the suspected portal of entry of the organism is the gastrointestinal tract,then there is 

suggestive evidence (.7) that the identity of the organism is bacteroides. (Davis et al., 1977: 

21) 

Each rule is a ‘single, modular chunk of knowledge’ (p. 21), in that it can be added, 

altered or removed, without requiring a rewriting of the entire knowledge base. This 

design feature was intended ‘to accommodate a large and changing body of technical 

knowledge’ (p. 17), or more generally a recognition that the domain is not static. 

Modularity is a commonly posited solution to the problem of changing domains. In 

addition to changing knowledge, the domain of medicine demonstrated features that 

distinguished it from the ‘toy problems’ of earlier AI applications: 
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Since we want to deal with real-world domains in which reasoning is often judgmental and 

inexact, we require some mechanism for being able to say that ‘A suggests B’, or ‘C and D 

tend to rule out E’. (p. 22) 

The developers of Mycin characterized medicine as a domain of judgmental reasoning 

in which evidence can be incomplete, uncertain, or contradictory, and yet decisions must 

be made in a time-bounded manner. And so, rules also had to reflect the uncertainty of 

the domain, and Mycin’s heuristics the real world procedures for decision-making in the 

face of uncertainty. For Mycin, the solution was to give each rule a certainty factor, or 

the ‘numbers used to indicate the strength of a rule’ (p. 22), and to annotate the system’s 

output decisions a with an aggregated certainty factor (e.g. ‘.7’ in the quote above). More 

generally, Davis et al. called for more study of ‘models of inexact reasoning’ (p. 29), 

which in addition to certainty factors included, for instance, the further development of 

fuzzy logic. With the recognition that real world domains operate in the face of 

uncertainty, or using judgmental reasoning rather than predicate logics, one response was 

to develop formalisms that could reproduce or mirror those forms of reasoning. In the 

‘knowledge based approach’ of Mycin, one consideration was that domains might have 

styles of reasoning, or logics, of their own. 

The formal production rules were ‘encoded’ representations of domain knowledge, 

‘acquired’ from experts themselves. In publications, very little is reported about the 

experts who contributed their time and knowledge to this enterprise, who were primarily 

doctors in the Stanford medical school. Even less is reported about the practical process 

of knowledge acquisition, with only very high-level descriptions of the prompts and tasks 

given to experts, such as having experts articulate premises and actions. As we noted 

above, this is reflective of a thin methodological repertoire for relaying the knowledge 

acquisition process, a repertoire that would later expand enormously; this is discussed in 

the next section. 

However, Davis et al. (1977) reflect extensively about the limitations of their 

acquisition process. For instance: 

a fundamental assumption is that the expert teaching the system can be ‘debriefed’, thus 

transferring his knowledge to the program. That is, presented with any conclusion he makes 

during a consultation, the expert must be able to state a rule indicating all relevant premises for 

that conclusion. The rule must, in and of itself, represent a valid chunk of clinical knowledge. 

(p. 40) 

These are indeed rather vast assumptions, and, as we noted above, they become the topic 

of an expanding literature and methodological repertoire focused on knowledge 

acquisition and representation, as well as the grist for critiques of the entire expert system 

research program (c.f., Collins, 1990; Forsythe and Buchanan, 1989; Schank and Jona, 

1994). 

We have thus far portrayed as distinct the approaches for Mycin and the General 

Problem Solver, but it their continuities that reveal a common style of organizing across 

the logic of domains. While the developers of these programs approached the domains 

differently, they shared the conviction that there is something beyond the domains that 

is ‘general’ or ‘independent.’ As we have seen, initially Mycin was domain specific, but 
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a key feature was that, from the start, it was developed with the goal of supporting 

domain independence. This becomes explicit with eMycin or ‘empty Mycin’. 

What was eMycin empty of? Domain knowledge. eMycin is often described as the 

first ‘shell’ for expert systems. By emptying the program of its domain specific rules, 

what was left was a tool based on the ‘domain independent core of the Mycin program’ 

(Van Melle, 1980: 1). As with GPS, what was general about eMycin was its reasoning 

heuristics. This core or shell was then ‘applied’ to other domains, sustaining its reasoning 

heuristics, but thereafter filled with production rules specific to another domain. 

How does one empty a program of its domain knowledge? According to the 

developers, Mycin had been designed to support such an activity from its inception by 

keeping separate the procedural knowledge base (domain) from the reasoning heuristics 

(independent). This architectural design consideration had been inspired by the General 

Problem Solver and adapted from DENDRAL: ‘No other AI program, including 

DENDRAL, had been built using so much domain specific knowledge so clearly 

separated from the inference procedures’ (Buchanan and Shortliffe, 1984: 11). Here, the 

conceptual distinction between the domain specific and independent features was 

materialized in an architecture that separated knowledge from reasoning. However, as 

one developer of eMycin noted: 

Despite the stated design goal, there was much code in Mycin that referred to specific aspects 

of the infectious disease domain. These ranged from the simple cases of strings and other 

quoted text referring to ‘the patient’ (these were changed to refer to variable strings, or more 

generally to ‘the case’), to instances of actual domain knowledge in the code. … In some cases 

this knowledge was reformulated into rules, while other instances became domain specific 

‘hooks’ (Van Melle, 1980: 8) 

This account hints at the kind of practical boundary work required to enact the distinction 

between domain and independent features. In this case, boundaries were drawn by, first, 

designing in the software a division between general heuristics and domain specific rules, 

and thereafter creating a shell by carefully rewriting user prompts and code vocabularies 

in a general language.4 Following this, using eMycin as a shell, various AI researchers 

went on to create domain specific production rules in the interpretation of, for instance, 

pulmonary function measurements (‘PUFF’); diagnoses of a range of psychiatric 

disorders and recommended drug treatments (‘HEADMED’); and, with SACON, ‘in a 

stronger test of domain independence, eMycin was applied to the non-medical domain 

of structural [engineering] analysis.’ (Van Melle, 1980: 6). Even while divesting and 

repopulating all this domain knowledge, eMycin retained its etymological roots via its 

antibiotic inspired naming. eMycin came to serve as an exemplary second pathway to 

domain independence. While GPS had been developed to be general, thereafter to be 

‘augmented’ with domain specific content, Mycin began as a tailored domain specific 

application organized so as to facilitate division of domain from independent features; 

from this a domain independent shell was extracted.5 In almost all cases in the 1960s and 

70s (but certainly not in all figurations in this article), reasoning heuristics are the central 

features of what constitutes generality or domain independence, while problems and the 

knowledge to solve them constitute domains. The development of a general tool 

thereafter tailored to domains (e.g. GPS), or a domain specific tool thereafter stripped of 
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its specificity (e.g. eMycin), became two common approaches in AI and beyond. But 

these are only two of the proffered ways for achieving domain independence; we explore 

others, such as ‘domain analysis’ in the next section, in which a feature is identified as 

common across domains and thereafter placed in circulation for general reuse across 

them. 

With both GPS and eMycin, and more broadly in AI at the time, universality had been 

defined and architecturally materialized as an absence of specificity. This formulation 

thereafter propels a common dynamic in the logic of domains: Efforts to engineer 

generality or domain independence demand a concurrent empirical project that seeks out 

and fills in the missing quantity of specificity, i.e. the domains, or the ‘real world’. 

The next section tracks the logic of domains beyond artificial intelligence, with a 

focus on the mutating and expanding content of domains, modes of inquiry, and 

materializations in formal methodologies and tools. However, while in this article we 

leave artificial intelligence behind, AI has not left behind the logic of domains. We can 

find papers, tools and programs throughout the late 20th century, and right up the present, 

that rely on this formulation, advancing it, challenging it, and offering new modes of 

inquiry and formalisms for representation. 

Domain analysis: Formalizing approaches to the domains 

In the first approach explicitly called ‘domain analysis’, a domain came to refer to the 

organizational setting of software use. While artificial intelligence researchers had set 

themselves a grand task — developing knowing, reasoning and problem-solving 

machines — software engineering researchers in the 1980s took on the arguably more 

mundane goal of facilitating the reuse of software. Perhaps mundane, but certainly not 

easy, software reuse remains a lively topic of research throughout the late 20th and early 

21st centuries, and descendants of domain analysis initially developed by James 

Neighbors, Rubén Prieto-Díaz, Guillermo Francisco Arango and Peter Freeman at the 

University of California Irvine in the 1980s remains one key method promising 

successful reuse. 

This section focuses on domain analysis to illustrate the drive to formalize methods 

of inquiry on and encoding of domains. The discussions that surrounded domain analysis 

are exemplary of goals to encode the logic in explicit method, toolkits and software 

suites. Such approaches seek to regularize, systematize or render easier the doing of 

domain analysis. Domain analysis is an example of the development of methodic and 

tool-based approaches to the logic of domains. By delegating inquiry and representation 

to prepackaged methodic approaches, knowing domains and generating pathways 

between them becomes easier to do, and perhaps also harder to think about; not quite 

black-boxed, but on a pathway to it. 

Set within a broader set of concerns that historian Ensmenger (2012) calls ‘software’s 

chronic crisis’, domain analysis sought to reuse general ‘software parts’ within and 

across specific domains. Drawing on the history of gun manufacturing, in his 1980 

computer science dissertation James Neighbors argued for a ‘parts and assemblies’ 

approach to software, in which problems or software features were identified in order to 

produce general software ‘parts’ and standard approaches to their reuse, or ‘assembly’. 
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He called the approach Draco, and the process of identifying those common problems 

and tasks domain analysis: ‘The concept of domain analysis is introduced to describe the 

activity of identifying the objects and operations of a class of similar systems in a 

particular problem domain’ (Neighbors, 1980: 1). 

As with domains in knowledge-based expert systems, domains in software 

engineering are empirical objects that must be investigated to be known, and thereafter 

represented. Neighbors identified his research as sitting at the intersection of AI and 

software engineering, and drew heavily from the expert systems literature and AI more 

generally. But while Neighbors made the genealogical lineage clear, he significantly 

transformed the concept of a domain, at times making it sound like the object of social 

scientific fieldwork, as in his example of developing software tools to aid travel agents: 

[Domain analysts] would go out to travel agent offices and study the activities of travel agents. 

A model of the general activity of being a travel agent would be formed and the objects and 

operations of the activities identified. At this point, the analyst of the domain of travel agent 

systems would decide which general activities of a travel agent are appropriate to be included 

in travel agent systems. (p. 6) 

A notable difference from what we have seen before lies in what domains are ‘made of.’ 

In domain analysis, the object of interest is less ‘knowledge’ and more the ‘activities’ 

and ‘objects’ in a domain. A second difference is a more capacious understanding of 

expertise. AI researchers had focused largely (though not exclusively) on scientific 

contexts, but with domain analysis in software engineering, expertise is a property of 

business (e.g. a travel agent), or really any group using software. 

But what most sets domain analysis apart from what we have seen before is the focus 

on developing a routine, repeatable method for inquiring upon and representing the 

domains. Neighbors posits several specialists who were to embark on the task, who he 

called domain analysts, modelers and designers. Figure 1 is drawn from a paper 

published in 1989, in which the process of domain analysis is cast generally. On the left 

are ‘users of similar systems’, in the middle various ‘domain modelers’ acting as 

translators, and on the right the Draco repository itself that collects the outcomes of 

iterations of domain analyses. The domain modeler’s goal is to identify commonalities 

across similar systems, encode or extract these as general software features, and place 

those features in a repository for reuse. 

A careful inspection of Figure 1 reveals that users of similar systems (top-left) are 

portrayed as happy smiling characters, while the domain analysts (middle) appear 

ambivalent. This is no accident. Neighbors emphasized the investment and difficulty of  
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Figure 1. The process of analyzing domains (Neighbors, 1989), moving from specific (left), to 

domain modeling (middle), the general Draco repository (right), and specific reuse (bottom). 

Domain analysis is hard (thus the frowny faces for analysts) but facilitates reuse (thus smiling 

faces below). 

conducting domain analysis, and his methodology generally reflects a mounting drive to 

formalize inquiry and capture: 

Domain analysis describes a range of systems and is very expensive to perform. … Domain 

analysis requires a craftsman with experience in the problem domain. (p. 7, emphasis added) 

The craftsman is an intriguing figure for the logic of domains. As Neighbors notes, ‘a 

craftsman gains enough experience to create a problem domain’ (p. 8). Inscribing the 

logic of domains in a single individual, the craftsman may themselves be a domain expert 

but with the skills to identify and encode the domain in a computable formalism. 

In the broader trajectory of the logic of domains, boundary-spanning figures such as 

the craftsman are a commonly proffered solution to the problem of transcending the 

specificity of domains. By various names, such figures populate each of the 

manifestations recounted in this article. Arguably, Shortliffe himself was that figure in 

the development of Mycin, gaining a dual expertise in medicine and in formulating 

infectious disease as computable rules. As eMycin’s developers came to work with more 

and more domains, they articulated a role for an ‘intermediary’ or ‘knowledge engineer’: 

In our experience, the model for this process has been that a person (‘knowledge engineer’) 

familiar with eMycin’s representation interacts with the expert, elucidating the task to be 
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performed and the particular knowledge needed for reasoning in the domain. (Van Melle, 1980: 

149) 

Representing the domain in computable rules requires understandings of the distinct 

technicalities of both the domain and the formalism. Later in this article we discuss ‘the 

bilingual’, ‘the pi-shaped person’, and efforts in Cyberinfrastructure to systematically 

develop a workforce of such boundary-spanning figures. Generally speaking, the hope 

is that such boundary-spanning figures will be able to sustain fidelity to esoteric expertise 

while transcending its specificity, faithfully encoding the domain in computational 

formalisms. 

It is worth taking a moment to contrast the approaches to developing generality or 

independence across expert systems and domain analysis. With eMycin, the general shell 

for expert systems, that independent software artifact was moved from one domain to 

the next, and was ‘filled’ with that domain’s specific knowledge at each stop. On its own, 

it is ‘empty’, in that domain content was evacuated from Mycin to create a domain 

independent shell, thereafter of potential use in any domain. In contrast, in domain 

analysis a feature is identified as common at a specific site, that feature is characterized 

in a formal domain representation (or software ‘parts and assembly’) and then deposited 

in the repository for reuse. Much like eMycin, the Draco repository is initially ‘empty’ 

of domain content. Over time, and across many domain analyses, the repository collects 

more software ‘parts and assemblies’ as further resources for software reuse. In that it is 

applicable to all domains, eMycin is general. In the case of domain analysis, specific 

software is rendered general and able to circulate across domains by placing that software 

in a repository. While figured differently, both approaches exhibit the telltale features of 

the logic of domains: domain specificity, independence or generality, and the goal to 

circulate resources across domains. 

Multiple investigators have further sought ‘to formalize the domain analysis process, 

and to develop technologies and tools to support it’ (Prieto-Díaz, 1990: 48). For instance, 

Feature Oriented Domain Analysis (FODA), developed by researchers at Carnegie 

Mellon University, extensively describes multiple stages of customer engagement, 

research, identification of general features, modeling and representation, and 

formalization. Much like the goals for software in domain analysis, such methodologies 

seek to render domain analysis itself into a portable ‘off the shelf’ approach for use in 

any context where software reuse may be desirable. A 2009 review article identified 31 

software tools developed to support domain analysis. Such tools encode methods and 

categories in order to facilitate the process of identifying and circulating general software 

components, thus supporting ‘a repeatable process, and … reuse of higher level life cycle 

artifacts’ (Lisboa et al., 2010: 2). 

Efforts to formalize methodology also speak to the challenge of actually analyzing 

domains, for a recurrent theme in domain analysis has been the desire to transform the 

approach ‘from art form to engineering discipline’ (Arango, 1989: 152). The many extant 

methodologies and tools speak to the success of formalizing the broader arc of domain 

analysis, even while other aspects have proven systematically challenging. In virtually 

every effort to systematize domain analysis, the authors have found themselves 

reminding readers of key challenges: ‘knowledge about a problem domain is often 
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implicit and nonformal, while reusable information must be usually represented 

explicitly and formally’ (Arango, 1989: 154). Prieto-Díaz (1990), in his effort to codify 

domain analysis, remarked on the seemingly bottomless specificity of domains and 

consequent need to tailor analytic methodologies, once again calling for a boundary-

spanning figure: ‘A domain analyst is expected to be a person of all trades’ (p. 52). 

Similarly, even while calling for domain analysis to become an engineering discipline, 

Arango (1989) lamented: ‘Potentially, there is a need for a large number of practical 

domain analysis methods, at least as many as there are types of reuse’ (p. 159). In short, 

even as these researchers sought to codify the overarching process of domain analysis, 

they noted how the heart and core of analyzing and representing a domain might prove 

recalcitrant to generalization, or, itself domain specific. 

Domain analysis in software engineering remains an academic research enterprise.6 

As such, even while seeking to package up their approach in methodic or software based 

approaches they continued, and even promoted, a speculative discourse on what domains 

‘are’, ‘have’ or are ‘made of’, and what may be the nature of intermediation across 

domains. Methodic, formal or tool-based approaches to the logic of domains thus serve 

to facilitate the analysis and representation of domains, along with their intermediation, 

but without fully sealing into a black box such questions as: What are domains? How do 

we know them? In what formalism do we capture them? In the next section we explore 

how this discourse has been picked up in science policy, technological development 

projects and vernacular talk, and therein has largely lost this speculative quality, even 

while serving as a de facto organizing principle. 

From technical to vernacular: The logic of domains as an 

organizing principle in science policy 

By necessity, our tone shifts markedly in this section as we focus on how the logic of 

domains has become a vernacular organizing principle. The general trajectory we 

observe is a shift from a series of academic research programs (i.e. expert systems or 

domain analysis) to an organizing principle that takes the logic as its implicit starting 

point. McCarthy and Hayes’ call to examine epistemological commitments is far more 

challenging in vernacular manifestations of the logic of domains, for in science policy 

and in everyday talk commitments are rarely made explicit and the concept of domains 

is treated casually, as a matter of fact, rather than speculatively. This is likely intentional 

as, for instance, calls for funding proposals are broadly worded to encourage a variety of 

submissions. But without explicitly stated commitments, so too fall out many of the 

debates we characterize for the logic of domains in this article. It is in this sense that we 

use the term ‘vernacular’, and it is in this sense that the logic of domains has become an 

organizing principle: Domains and the need for their intermediation act as received 

starting points to arrange some technological endeavor of scientific and engineering 

research, to organize a heterogeneous collaboration, or to build tools and infrastructure. 

Our inspections of policy are exclusively focused on US science policy and 

organizational forms — while there is strong evidence that some form of the logic 

reaches well beyond, we limit ourselves to the settings we understand best. Drawing on 

the language of the Computing the Future report, here the logic of domains becomes an 

‘engine for progress’, as funding opportunities are organized as collaborations of 
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computer (information or data) scientists in tandem with domain experts, promising 

advance and utility for both. 

The late 1980s is often described as an ‘AI winter’, a period in which the ambitious 

claims of AI, and of computer science more broadly, came under heightened scrutiny in 

the academy and greater suspicion within business (e.g. Boden, 2008; Nilsson, 2009). 

The result was a decline in public and private funding, and esteem. One response was to 

develop a new strategy: Rather than buttress the disciplinary boundaries of computer 

science, that discipline sought to embrace collaborations with other scientific and 

engineering practitioners, and with business and government, i.e. the domains – see 

Figure 2. In the words of the Computing the Future report, computer science and 

engineering (CS&E) should: 

recognize that intellectually substantive and challenging CS&E problems can and do arise in 

the context of problem domains outside CS&E per se. CS&E research can be framed within 

the discipline’s own intellectual traditions but also in a manner that is directly applicable to 

other problem domains. (NRC, 1992: p. 4) 

Broadly read and influential, Computing the Future articulates the logic of domains as 

one de facto operating procedure for small and large applied computing ventures, 

promising insights for domains and basic advances for computing: ‘CS&E can thus be 

an engine of progress and conceptual change in other problem domains, even as these 

domains contribute to the identification of new areas of inquiry within CS&E’ (NRC,  

 

Figure 2. Drawn from the Computing the Future report, caption in original (NRC, 1992). 

1992: 4, emphasis added). We call this the all boats will rise thesis because it is often 

explicitly stated using the ‘a rising tide lifts all boats’ proverb in ventures that call for 

the collaboration of computation (information or data) science and the domains. Perhaps 
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implicit throughout the figures we have examined, beginning in the 1990s, the all boats 

will rise thesis becomes a mainstay in science policy circles associated with the logic of 

domains. 

Beyond this new strategy, Computing the Future articulates two common tensions 

that have haunted computational practitioners adopting the logic of domains: the threat 

of lessened academic prestige by being ‘applied researchers’, and the danger of being 

treated as a ‘service science’. As with most academic scientific enterprises, the label 

‘applied’ in the computing sciences has traditionally been associated with practical and 

site-specific outcomes, while ‘basic’ research carries with it promises of generality. More 

broadly, since the logic of domains has always been concerned with engaging some facet 

of the real world, the logic has been associated with applied research from its beginnings; 

for example, recall Feigenbaum’s characterization that expert systems are ‘the applied 

side of AI’. 

The Computing the Future report vociferously rejected the basic and applied 

distinction for the computing sciences, instead asserting that working with the domains 

is a pathway to basic insights, generality and perhaps universality: 

at least within CS&E, the traditional separation of basic research, applied research, and 

development is dubious. Given the way research in CS&E is practiced, distinctions between 

basic and applied research are especially artificial, since both call for the exercise of the same 

scientific and engineering judgment, creativity, skill, and talent. (NRC, 1992: 5) 

The distinction between basic and applied has never been a firm one, and Gieryn (1983) 

and Calvert (2006) have shown that it is best thought to be a strategically deployed 

boundary. But, as Gibbons et al. (1994) have also shown, the late 1980s and early 1990s 

witnessed a widescale revisioning of the importance of applied science, and of 

collaborations across academic, industry and government sectors. 

Being applied, however, bears more dangers than whether it can achieve generality. 

Applied computing also carries the risk of sidelining novel research, casting computer 

scientists as ‘mere’ technicians, software or web developers, or some sort of 

infrastructural plumber. The danger is quite real, as there is marked tension between the 

labor of research that pushes the limits of computation and the enormous task of 

developing stable, usable and sustainable systems (Ribes and Finholt, 2009). Computing 

the Future suggested a structural solution — one that has itself become a de facto 

organizing principle — ensuring a protected position for novel computational research 

even while continuing to promise utility for the domains: 

It is essential that such work be done by investigators from CS&E and other disciplines and 

areas who regard each other as intellectual equals … maintain[ing] both an understanding of 

the future state of the art in computing and an appreciation of the real problems in the 

application domains. One way of ensuring true collaborative work is to consider only proposals 

where principal investigators are drawn both from CS&E and some other discipline or area. 

(NRC, 1992: 146 emphasis added) 

By recommending that leadership be composed of computing and domain scientists, this 

funding structure sought to ensure that the research interests of computing were not 

subjugated to goals for providing useful domain resources. 
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Following the Computing the Future report, this funding model became an 

organizational mainstay for computing funding, particularly through its ‘applied’ 

offshoots such as the National Science Foundation (NSF) Digital Libraries program and 

the Information Technology Research (ITR) funding line, Cyberinfrastructure and, most 

recently, Big Data, and data science more generally. Here we will focus on 

Cyberinfrastructure and data science funding ventures at the NSF. 

Cyberinfrastructure presented a unique ‘infrastructural’ formulation of the logic of 

domains. Figure 3 is drawn from the influential Revolutionizing Science and Engineering 

Through Cyberinfrastructure NSF report, more commonly called the Atkins Report 

following its chair (Atkins et al., 2003). This image of organization presents a vision for 

infrastructure across the sciences and engineering, tailored for the domains but designed 

for generality across them. Drawing on a common visual trope of a ‘stack’, elements 

higher on the diagram are closer to the user (i.e. domain scientists) while those elements 

lower on the stack are more general, universal or fundamental. Thus, domain specific 

applications are undergirded by generic applications and even more generic core 

information technologies. 

Drawing on rhetoric similar to that of the software crisis in domain analysis, the 

Atkins Report asserted that Cyberinfrastructure should avoid the waste of recreation, and 

embrace modularity and reusability: 

Commonalities across science and engineering disciplines must be captured. Absent 

appropriate levels of coordination and sharing of facilities and expertise, there would be 

considerable duplication of effort, inefficiency, and excess costs. (Atkins et al., 2003) 

Commonalities across domains are the bailiwick of core information technologies even 

as Cyberinfrastructure would continue to require the development of domain specific 

applications. Recapitulating the concerns of Computing the Future, the Atkins Report 

poses the development of infrastructure as a balance between domain and computational 

advances: 

If the organization is weighted too heavily toward the domain scientists, the focus 

overemphasizes procurement of existing technologies, and computer scientists become viewed 

as ‘merely’ consultants and implementers. If the weight shifts too heavily toward computer 

science, the needs of end users may not be sufficiently addressed, or effort shifts too heavily 

toward creating new technologies with insufficient attention to stability and user support. 

(Atkins et al., 2003: 50) 

Such programmatic policy formulations of the all boats will rise thesis cast a dual 

responsibility for technology development efforts: i.e. serving to push forward research 

on novel computational capacity while simultaneously capacitating the domains in 

computational technique. 

This dual responsibility is recapitulated throughout the vision of Cyberinfrastructure, 

such as with the people who will build it, and in the architecture itself. For example, the 

report called for the education of a new kind of workforce, involving a systematic 

training of boundary-spanning figures who are simultaneously domain and 

computational experts: ‘These individuals have expertise in a particular domain science 

area, as well as considerable expertise in computer science and mathematics’ (Atkins et 
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al., 2003: 26). In addition, the report also inscribes the logic of domains into the very 

technical architecture of Cyberinfrastructure: ‘Applications are a hybrid case with shared 

responsibility between technological and disciplinary programs.’ Applications thus have 

a dual job of meeting the needs of the domain (upwards in Figure 3), and a 

‘responsibility’ to a generic architecture undergirding connections across the domains 

(downwards in Figure 3). Goals for spanning the boundaries between domains and what 

is beyond them (or with Cyberinfrastructure, ‘below them’) were thus recapitulated at 

each scale, or what Ribes (2018: 527–528) has called the fractal or holographic properties 

of domains: the individual as both a domain and computational expert; a dually 

responsible application layer; and Cyberinfrastructure as intermediating all the scientific 

and engineering domains. 

 

Figure 3. Cyberinfrastructure architecture diagram (Atkins et al., 2003). Specific disciplinary 

applications are undergirded by generic infrastructure: ‘[generic] applications are a hybrid case 

with shared responsibility between technological and disciplinary programs.’ 

The Cyberinfrastructure program primarily targeted what is perhaps the most 

commonly articulated feature of domains today: they have ‘real world’ data. In general, 

projects dubbed Cyberinfrastructure sought to facilitate the discovery, circulation and 

reuse of data across their targeted domains. This interest in data has magnified in the 

2010’s with Big Data and data science. 

Turning to data science, a recent call for proposals at NSF sought to foster the 

development of a theoretical core for that nascent field: Transdisciplinary Research in 

Principles of Data Science, or TRIPODS. From its 2016 call for proposals, the TRIPODS 

funding program ‘aims to bring together the statistics, mathematics, and theoretical 

computer science communities to develop the theoretical foundations of data science’ 

(NSF, 2016). It is these three disciplines that are solicited to develop TRIPODS centers, 

marking them as the domain independent experts of data science. 

Scrolling down to the Frequently Asked Questions (FAQ) released with the TRIPODS 

call for proposals, one finds the question ‘What is the role of domain scientists? Can a 

domain be the primary focus?’ The answer from the NSF (2016) is worth quoting in full 

here: 

Domain scientists should serve as a resource for a TRIPODS institute to maintain connectivity 

to real-world issues and ensure relevance. That said, while practical applications serve as 

drivers, foundational work should be broadly applicable. Bear in mind that proposals will be 
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reviewed by a broad range of mathematicians, statisticians, and computer scientists, and thus 

focusing too narrowly on a particular domain may not have the broad appeal to be considered 

competitive in the context of the goals of the TRIPODS program. (emphasis added) 

TRIPODS simultaneously defines the insides and outsides of a theoretical core for data 

science, and thus the recipients of this funding allocation as the domain independent 

fields of mathematics, computation and statistics. 

However, no formulation of the logic of domains is complete without a role for the 

domains. Following the awarding of 12 TRIPODS centers in 2017, NSF rolled out its 

follow-on funding program Partnerships between Science and Engineering Fields and 

the NSF TRIPODS Institutes. More commonly known as Tripods+X, in this formulation 

participating groups are ‘referred to as “Field X” or “domain science & engineering”’ 

(NSF, 2018), with ‘X’ evoking its traditional role in equation-solving as any unknown 

variable. Tripods+X projects are thus cast as ‘domain applications’ of fundamental or 

general data science theory, with, in 2018, projects funded to investigate a wide header 

of topics such as chemistry, climate science or supply chain optimization. 

Projects funded by TRIPODS and TRIPODS+X grants thus return to the research, 

method and tool development activities we have recounted in previous sections. Science 

policy that adopts a de facto formulation of the logic of domains itself serves to generate 

new avenues for novel research on domains and independence, along with technology 

development efforts that serve to facilitate the analysis, representation and 

intermediation of domains. Inscribed in science policy, such funding opportunities 

indeed do become ‘an engine’ for the logic of domains, propelling it anew. However, 

whether this results in conceptual progress for both computation and the domains has 

received very little empirical treatment, as discussed below. 

While the figures we have presented in this article are roughly arranged in a 

chronologic manner, later figures have not superseded earlier ones. Quite the opposite: 

Science policy that organizes (and funds) projects by the logic of domains opens new 

avenues for research and tool building. Today, there are many lively threads of the logic 

that explore, systematize and delegate, novel technical formulations for how to know and 

represent the domains. Neither wholly formalized nor wholly vernacularized, all these 

threads remain in active discourse, operating in parallel, in tacit coordination, and 

sometimes in agonistic encounters. 

Recurrent challenges 

By way of discussion, here we offer a synthetic view of the common set of problems that 

have accompanied formulations of the logic of domains. No single actor articulates all 

these problems; instead, they appear sporadically across literatures while also repeating 

systematically. We parse these into four repeated articulations of problems: ontology, 

inquiry and representation, accountability, and the relationship of the general and the 

specific. We offer these statements of problems, first, as responses to the 

vernacularization of the logic, and second, as a means to set forth a program of research 

that will inspect the practice and consequences of the logic of domains. 
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The ontological problem: Are domains real? What are they? Are they the 

right way to approach the division of knowledge or expertise? 

The use of ‘domain’ reveals several concurrent referents: world, expert and 

representation. The term is perhaps most commonly used to refer to the group of experts 

concerned with some worldly matter; such as, with Mycin, doctors diagnosing infectious 

illness. However, sometimes domain also refers to the representation of those experts; 

with Mycin, the knowledge base or collection of production rules. Finally, domain also 

refers to the world itself; with Mycin, infectious disease and its treatment. As computer 

scientist Phil Agre (2002) has noted: 

Even in domains that involve physical objects, it is common for AI people (and computer 

scientists in general) to employ the same words to name both the representations in a machine 

and the things that those representations represent. (p. 134) 

On occasion, some investigator has set out on a Kantian endeavor to disentangle these, 

treating world, experts and representation discreetly. However, even in the most ardent 

such bounding efforts, usage tends to slip. More broadly, in talk and writing, the term 

‘domain’ can refer to one or more of: a facet of the world, the experts concerned with 

that facet, and representations of that expert group. In some sense, then, all three of these 

are the ‘real world’, as measured against domain independence, which is not. 

Some approaches take domains to be self-evident, ready-made or ‘out there’ while 

others treat domains as constructs: ‘The domain is constructed in and through the process 

of planning, design and construction of a particular [system]’ (Albrechtsen, 2015: 559). 

Similarly, some, perhaps most, have taken an emic approach to defining the contours of 

domains, ‘Each domain … is limited by a boundary that defines its scope. The borders 

define what objects, operations, and relationships belong to each domain’ (Prieto-Díaz, 

1990: 51). From such investigative approaches, domains come to mirror disciplinary 

formations, since when asked what counts as their domain, academic experts will often 

point to their discipline. 

Others have taken an etic approach to the investigation of domains, such as with social 

network analyses of co-authorship or citation, ‘[s]ince there is no established, widely 

accepted “best grouping”, we determined to derive our own from observed relationships 

… (i.e. their co-citation in articles)’ (Porter and Rafols, 2009). This form of inquiry often 

reveals domains that do not mirror disciplinary identities. Such stances certainly have 

consequences, but the intellectual span of the logic of domains appears capable of 

operating across these seemingly disjunctured epistemological and ontological 

commitments. 

The most persistent and evolving threads of inquiry have routinely asked what 

domains ‘have’, what is their ‘content’, or what are they ‘made of’: e.g. problems, 

knowledge, or logics. With the logic of domains such questions are never rhetorical, as 

they drive the adoption of methods of inquiry and media of representation for domains. 
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The problem of inquiry and representation: How should domains be 

known? How should they be represented? Are some domains more 

amenable to inquiry and representation? 

Whatever theoretically significant features domains are taken to ‘have’ need be reflected 

in what modes of inquiry ‘acquire’ and what media of representation can ‘capture’. As 

the potential content of domains has expanded, one response has been to adapt the 

methods of inquiry and representation from other fields (e.g. interviews, fieldwork, 

social network analyses) and to develop novel formalisms, such as for judgmental 

reasoning or domain specific logics. 

A recurrent concern is whether the available approaches to inquiry and representation 

may forestall engaging some domains altogether. For example, the developers of Mycin 

recounted the limits of their method to represent knowledge as procedural rules: ‘Not 

every domain will support this. It appears to require a field which has attained a certain 

level of formalization, which includes perhaps a generally recognized set of primitives 

and a minimal understanding of basic processes’ (Davis et al., 1977: 30). If this is the 

case, what happens to those domains that have not ‘attained a level of formalization’? 

Or, put less teleologically, are some domains less amenable to the available forms of 

inquiry and representation? Does domain analysis demonstrate a preference for certain 

styles of domains, and if so, will some domains systematically fall out of promised 

computational benefits? Some investigators have taken a stronger stance and suggested 

intervening on the domain to encourage formalization: ‘A concern in domain analysis 

research is that we cannot wait indefinitely for a natural evolution of a domain but must 

stimulate its maturation process through a systematic process’ (Prieto-Díaz, 1990: 49). 

Debates about the nature of domains have thus been coupled with strategies to expand 

forms of inquiry and representation that mirror that nature, and, occasionally, efforts to 

prod the domain to remake itself in the shape of whatever representational formalism or 

epistemic ideal is held at the time. A more subtle recurrent concern has been whether 

analysis and formal representation itself may transform a domain, and whether that is 

desirable or presents a fundamental challenge for the faithfulness of representation. 

However, as we elaborate below, essentially no research has systematically inspected the 

consequences of organizing by the logic of domains. 

Problems of accountability: Are representations faithful? Who will 

arbitrate? 

Formalisms often encode knowledge in ways that are inaccessible to the experts they 

seek to represent. Who are the arbiters of faithful representation? If the answer is experts 

themselves, then the next question is, ‘How can we represent knowledge in a way that it 

is easily understood by humans and also machine processable?’ (Prieto-Díaz, 1990: 52). 

We have not followed the thread of the logic that has sought to automate the 

representation of domains – such as with machine learning – but such approaches have 

been present from our first figuration. Writing in 1977 about the advantages of Mycin’s 

procedural rules over the machine learning system meta-DENDRAL, the authors 

extolled the virtues of symbolic AI: 



 Ribes et al.  303 

a system capable of handling an interactive dialog, and one which was not a ‘black box’. This 

meant that it had to be capable of supplying coherent explanations of its results, rather than 

simply printing a collection of orders to the user. This was perhaps the major motivation for 

the selection of a symbolic reasoning paradigm, rather than one which, for example, relied 

totally on statistics. (Davis et al., 1977: 17) 

Such long-standing discussions foreshadow contemporary concerns with the 

accountability of algorithms or the black-boxing of machine learning (Burrell, 2016; 

Kroll et al., 2016). Today, machine learning and other semi-automated approaches to 

representing the domains seems poised to explode (c.f. McCallum et al., 1999), and offer 

novel promises and dangers for representation, intermediation and accountability. 

We have also noted recurrent boundary-spanning figures as the proffered solution to 

faithful representation and the transcending of domain specificity, such as the 

‘craftsman’ of domain analysis or the ‘knowledge engineer’ of expert systems. A vivid 

figure in contemporary data science is the ‘π-shaped person’, with each leg of pi 

representing a distinct skill set and the squiggle between them the capacity to translate 

across these (Ribes, 2018). In 2018, the president of MIT University, L. Rafael Reif, 

proffered a new figure: the bilingual. In his announcement promising an investment of 

one billion dollars for a new college focused on artificial intelligence, he stated that the 

goal of the unit is not only to train a new generation of computer scientists, but also to 

‘educate the bilinguals of the future’ (Lohr, 2018), with bilinguals defined as people in 

fields like biology, chemistry, politics, history and linguistics who are also skilled in the 

techniques of modern computing that can be applied to them. 

Apprehensions about the interpretability of formalisms or representations, and 

recurrent boundary-spanning characters, both speak to the concern that representing 

domains is epistemically challenging, and that evaluating representations is itself doubly 

technical, i.e. domains are often esoteric, and in a completely different way, 

representations of domains too are esoteric. 

The relationship of the general and the specific 

A consequential philosophical element of the logic of domains is the posited relationship 

between domain specificity and independence (or generality, universality and 

intermediation). It has often been suggested that the computing sciences are not 

empirical, and in that sense are more akin to mathematics than, say, biology or geology. 

But domains are precisely that, one of the long standing if only partially acknowledged 

epistemic objects of the computational or data sciences. As with any epistemic object, 

domains have displayed an emergent and recurrent trajectory, at times recalcitrant to 

characterization and manipulation, at other times leading to great practical advances. 

Epistemic objects are generative, or, as Rheinberger (1992) puts it, they are ‘question 

machines’, recurring anew at each investigation. Domains have proven to be question 

machines for decades, even as they have also served engineering goals by grounding 

computing applications in the ‘real world’. 

We (and occasionally the actors) have cast the logic of domains as occurring in a 

rough spectrum that, on the one end, treats domains as fully decomposable using a 

common analytic approach or formalism, and, on the other end, treats domains as 
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distinct, arguably with logics of their own, but still available to intermediation. 

Respectively we call these representationalist and irreductionist approaches (Latour, 

1988; McCarthy, 2017; Monea, 2016). Herbert Simon has stood in for the 

representationalist end of the spectrum, with his (in)famous assertion that all problem 

domains, well- or ill-structured, can be approached in the same manner. This kind of 

assertion varies across figurations of the logic, but is recurrent. For example, in an effort 

to establish metrics for the representational capacity of computational ontologies, Wand 

and Weber (1993) proffer the concept of ontological expressiveness: formalisms ‘are 

ontologically expressive if they are capable of describing all real-world phenomena 

completely and clearly’ (p. 217). 

The irreductionist end of the spectrum is more nebulous, but is recurrently expressed 

as the possibility that domains may have logics of their own (such as ‘judgmental 

reasoning’) or the consideration that distinct methods and formalisms may be required 

for particular domains (e.g. as with domain analysis above). Star (1989) perhaps most 

clearly articulates the irreductionist position in an explicit critique of Simon’s classic 

paper: 

Instead of a search for a logical Esperanto, … we should search for an analysis of objects. 

Problem-solving … produces workable solutions that are not, in Simon’s terms, well-

structured. Rather, they are ill-structured: they are inconsistent, ambiguous, and often illogical. 

Yet, they are functional and serve to solve many tough problems. (p. 51) 

Rather than positing a singular base formalism or procedure across the domains (a 

‘logical Esperanto’), the tertium quid, which Star (1989) calls a boundary object, is: 

‘abstracted from all domains, and may be fairly vague. However, it is adaptable to a local 

site precisely because it is fairly vague; it serves as a means of communicating and 

cooperating symbolically’ (p. 49). This formulation sustains key features of the logic of 

domains: There are domains, they are specific and heterogenous and yet it is possible to 

translate or connect across these. But, as Star (1989) asserts, ‘unlike Turing’s universal 

computer, the creation of boundary objects both respects local contingencies and allows 

for crosssite translation’ (p. 51). 

Representationalist approaches appear to suggest that computational models can stand 

in for, even replace, domain expertise. Expertise appears as something to be extracted or 

automated, ‘stretching whatever discourse they find upon the ontological grid that is 

provided by their particular design methodology’ (Agre, 2004: 8). In such a model the 

expert is ultimately disposable, and the specificity of the domain is something to be 

overcome. Contemporary manifestations of this pole include arguments such as that big 

data analytics or machine learning will dispense with the need for (domain) theory 

altogether (c.f. Anderson, 2008; Slezak, 1989). In contrast, irreductionist approaches 

tend to take a realist stance to the heterogeneity of expertise, knowledge, or domains 

more broadly; in some form they tend to recognize that, say, infectious medicine may 

require epistemologies and methods distinct from those for, say, understanding 

geologists, or travel agents. Irreductionist figurations of the logic speak to a desire for 

approaches to heterogeneity (of knowledge, expertise, methods or data) that do not resort 

to overcoming difference by reducing it to a single underlying logic or decompositional 

heuristic. 
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While the nature of the relationship domain/independent is a theoretical one, we have 

sought to show how such theoretical commitments are materialized in the development 

of systems, representational formalisms, and domain inquiry methodologies or software 

packages. There are many additional posited relationships between generality and 

specificity than we have been able to discuss here, and we expect that further axes of 

difference will be necessary to characterize them. 

Future research 

From the perspective of these four recurrent sets of problems, the vernacularization of 

the logic of domains and its de facto status as an organizing principle is troubling. In 

these literatures, reports and calls for proposals, theoretical commitments remain opaque, 

and claims for promised benefits remain uninspected. For example, there is no scholarly 

literature that has systematically examined the all will boats will rise thesis: Does 

organizing by the logic of domains necessarily act as ‘an engine for progress and 

conceptual advance’ for both computing/data science and the participating domain? The 

assertion has proceeded as a token of faith, as a programmatic assumption, and as an 

organizing mythology. What scholarly literature does exist on the topic suggests 

systematic difficulties. For instance, Ribes and Finholt (2009) have noted the tension 

between developing novel computational capacities and offering stable infrastructure: 

the ‘demos’ or ‘proofs of concepts’ that serve as intellectual contributions for applied 

computing research are a long way from the usable, useful or sustainable tools or 

infrastructures that can reliably serve domain users. The gap is a formidable one, 

requiring care, labor and expertise that are not always (or even rarely?) considered in 

projects organized by the logic of domains. It seems clear that all boats will rise should 

not be considered a necessary or automatic outcome of organizing under the logic of 

domains. Stated more strongly, without careful social organization and investments in 

usability and the sustainability of systems, the most likely outcome is that all boats will 

not rise. 

A key topic for future research, then, is to examine the practical and institutional 

organization of endeavors organized by the logic of domains. The disconnection from 

intellectual reflection that accompanies pithy phrases like ‘collaborations of domain and 

data science’ renders theoretical or epistemological commitments opaque. As a result, 

alongside pragmatic investigations of the organization of the logic of domains, reflexive 

and empirical-philosophical investigations are needed; these include an evaluation of the 

distribution of resources and benefits across domain and independent fields, and an 

inspection of the consequences of formalization and intermediation for activities cast as 

‘domains.’ Such questions return us full circle to our starting point with McCarthy and 

Hayes’ 1969 call to inspect ‘commitments about what knowledge is and how it is 

obtained’, a question that was once central to AI, subsequently marginalized, but remains 

of inarguable consequence for any endeavor organized by the logic of domains. 
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Notes 

1. The first figuration in this paper is not the ‘beginning’ of the logic of domains. The logic is 

observable before then, though less recognizably. For obvious reasons, before the 1960s the 

logic figures less as about developing computational systems, and more about logic, analytic 

philosophy and systems theory. All genealogical investigations demonstrate this quality: 

beginnings with receding horizons. 
2. What AI researchers took to be the nature of knowledge at this time involves its own set of 

intricate debates, and attendant intellectual camps that formed around, for instance, whether 

expertise should best be thought of, and represented as, ‘declarative’ (i.e. what people say 

they know) or ‘procedural’ (i.e. know-how, or if/then rules). See (Adam, 2006; Winograd, 

1975). 
3. Reflecting on his first encounters with artificial intelligence researchers in the 1970s, 

philosopher Hubert Dreyfus sought to more precisely characterize their philosophical 

genealogies: 

They had taken over Hobbes’ claim that reasoning was calculating, Descartes’ mental 

representations, Leibniz’s idea of a ‘universal characteristic’ – a set of primitives in which all 

knowledge could be expressed – Kant’s claim that concepts were rules, Frege’s formalization 

of such rules. (Dreyfus, 2007: 1137) 

To these we would add the influence of the mathematical theory of information, the universal 

Turing machine, and the algorithm as a central object for computer science. 
4. See Ribes and Bowker (2009) and Suchman and Trigg (1993) for practical accounts of what 

such generalizing work might look like; and see Forsythe and Buchanan (1989) for a critical 

account that emerged from the collaboration of an ethnographer and one of the developers of 

Mycin. 
5. The approach of developing a domain independent shell was successful in that it inspired 

many similar efforts, but it was also the object of critique. For example, Schank and Jona 

(1994) called out the ‘misconception that plagues expert system shells, what we call the “I’ll 

build the architecture so all you have to do is put in the knowledge fallacy.”’ They instead 

argued for the primacy of mapping domain specific knowledge over general architectures. 

Within knowledge representation circles, this debate has been rehearsed again and again. 
6. On several occasions there have been efforts to commercialize expert systems and domain 

analysis such as via academic consulting services or through creating new companies. We do 

not trace such efforts here. 
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